These functions extract various elements from a tidyflow object. If they do not exist yet, an error is thrown. Most of these steps can only be executed after the tidyflow has been fitted.

  • pull_tflow_rawdata() returns the complete raw/untrained data.

  • pull_tflow_split() returns the split object from the function specified in plug_split.

  • pull_tflow_training() turns the training data from the split. Only works when a split has been specified with plug_split. If prep = TRUE, the preprocessing (either recipe or formula) is applied to the data.

  • pull_tflow_testing() returns the testing data from the split. Only works when a split has been specified with plug_split If prep = TRUE, the preprocessing (either recipe or formula) is applied to the data.

  • pull_tflow_preprocessor() returns either the formula or recipe used for preprocessing. Note that if the recipe has a tune() argument, it won't be finalized.

  • pull_tflow_resample() returns the resample object from the function specified in plug_resample. The resample object does not have the preprocessor applied (either formula or recipe).

  • pull_tflow_grid() returns the grid data frame from which the tuning parameter was made.

  • pull_tflow_prepped_recipe() returns the prepped recipe.

  • pull_tflow_spec() returns the parsnip model specification.

  • pull_tflow_fit() returns the parsnip model fit.

  • pull_tflow_fit_tuning() returns the resample result from model tuning.

pull_tflow_rawdata(x)

pull_tflow_split(x)

pull_tflow_training(x, prep = FALSE)

pull_tflow_testing(x, prep = FALSE)

pull_tflow_resample(x)

pull_tflow_grid(x)

pull_tflow_preprocessor(x)

pull_tflow_prepped_recipe(x)

pull_tflow_spec(x)

pull_tflow_fit(x)

pull_tflow_fit_tuning(x)

Arguments

x

A tidyflow

prep

A logical stating whether the training/testing data should be returned with the preprocessing step applied (either the formula or the recipe preprocessing). By default it is set to FALSE.

Value

The extracted value from the tidyflow, x, as described in the description section.

Examples

library(parsnip)
library(recipes)
library(rsample)

model <- set_engine(linear_reg(), "lm")

recipe <- ~ recipe(.x, mpg ~ cyl + disp) %>% step_log(disp)

tflow <-
 mtcars %>%
 tidyflow() %>%
 plug_split(initial_split) %>%
 plug_model(model)

recipe_tflow <- plug_recipe(tflow, recipe)
formula_tflow <- plug_formula(tflow, mpg ~ cyl + log(disp))

fit_recipe_tflow <- fit(recipe_tflow)
fit_formula_tflow <- fit(formula_tflow)

pull_tflow_rawdata(fit_recipe_tflow)
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#> Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
pull_tflow_rawdata(fit_formula_tflow)
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#> Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

# The preprocessor is either the recipe function or a formula
pull_tflow_preprocessor(fit(recipe_tflow))
#> Recipe
#> 
#> Inputs:
#> 
#>       role #variables
#>    outcome          1
#>  predictor          2
#> 
#> Operations:
#> 
#> Log transformation on disp
pull_tflow_preprocessor(fit(formula_tflow))
#> mpg ~ cyl + log(disp)
#> <environment: 0x7fbde5031e78>

# The `spec` is the parsnip spec before it has been fit.
# The `fit` is the fit parsnip model.
pull_tflow_spec(fit_formula_tflow)
#> Linear Regression Model Specification (regression)
#> 
#> Computational engine: lm 
#> 
pull_tflow_fit(fit_formula_tflow)
#> parsnip model object
#> 
#> 
#> Call:
#> stats::lm(formula = ..y ~ ., data = data)
#> 
#> Coefficients:
#> (Intercept)          cyl  `log(disp)`  
#>    72.82463      0.06753    -10.06176  
#> 

# The raw training and testing
pull_tflow_training(fit_recipe_tflow)
#>                    mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Duster 360        14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Toyota Corona     21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
#> Dodge Challenger  15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> Valiant           18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Merc 230          22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> Merc 240D         24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> Toyota Corolla    33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Fiat 128          32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Hornet 4 Drive    21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Merc 280          19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 450SE        16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 280C         17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> AMC Javelin       15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Lotus Europa      30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Merc 450SL        17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Datsun 710        22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Volvo 142E        21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
#> Ferrari Dino      19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Porsche 914-2     26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Pontiac Firebird  19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Ford Pantera L    15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Hornet Sportabout 18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Mazda RX4         21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Fiat X1-9         27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
pull_tflow_testing(fit_recipe_tflow)
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8

# Or with the preprocessor (recipe/formula) applied
pull_tflow_training(fit_recipe_tflow, prep = TRUE)
#>     mpg cyl     disp
#> 1  14.3   8 5.886104
#> 2  21.5   4 4.788325
#> 3  15.5   8 5.762051
#> 4  18.1   6 5.416100
#> 5  22.8   4 4.947340
#> 6  24.4   4 4.988390
#> 7  33.9   4 4.264087
#> 8  32.4   4 4.365643
#> 9  21.4   6 5.552960
#> 10 19.2   6 5.121580
#> 11 16.4   8 5.619676
#> 12 17.8   6 5.121580
#> 13 15.2   8 5.717028
#> 14 30.4   4 4.554929
#> 15 17.3   8 5.619676
#> 16 22.8   4 4.682131
#> 17 21.4   4 4.795791
#> 18 19.7   6 4.976734
#> 19 26.0   4 4.789989
#> 20 19.2   8 5.991465
#> 21 15.8   8 5.860786
#> 22 18.7   8 5.886104
#> 23 21.0   6 5.075174
#> 24 27.3   4 4.369448
pull_tflow_testing(fit_recipe_tflow, prep = TRUE)
#>    mpg cyl     disp
#> 1 21.0   6 5.075174
#> 2 15.2   8 5.619676
#> 3 10.4   8 6.156979
#> 4 10.4   8 6.131226
#> 5 14.7   8 6.086775
#> 6 30.4   4 4.326778
#> 7 13.3   8 5.857933
#> 8 15.0   8 5.707110

# A useful shortcut is to extract the prepped recipe from the tidyflow
pull_tflow_prepped_recipe(fit_recipe_tflow)
#> Recipe
#> 
#> Inputs:
#> 
#>       role #variables
#>    outcome          1
#>  predictor          2
#> 
#> Training data contained 24 data points and no missing data.
#> 
#> Operations:
#> 
#> Log transformation on disp [trained]