These functions extract various elements from a tidyflow object. If they do
not exist yet, an error is thrown. Most of these steps can only be executed
after the tidyflow
has been fitted.
pull_tflow_rawdata()
returns the complete raw/untrained data.
pull_tflow_split()
returns the split object from the function specified
in plug_split
.
pull_tflow_training()
turns the training data from the split. Only
works when a split has been specified with plug_split
.
If prep = TRUE
, the preprocessing (either recipe or formula)
is applied to the data.
pull_tflow_testing()
returns the testing data from the split. Only
works when a split has been specified with plug_split
If prep = TRUE
, the preprocessing (either recipe or formula)
is applied to the data.
pull_tflow_preprocessor()
returns either the formula or recipe used
for preprocessing. Note that if the recipe has a tune()
argument,
it won't be finalized.
pull_tflow_resample()
returns the resample object from the function
specified in plug_resample
. The resample object does not
have the preprocessor applied (either formula or recipe).
pull_tflow_grid()
returns the grid data frame from which the tuning
parameter was made.
pull_tflow_prepped_recipe()
returns the prepped recipe.
pull_tflow_spec()
returns the parsnip model specification.
pull_tflow_fit()
returns the parsnip model fit.
pull_tflow_fit_tuning()
returns the resample result from model tuning.
pull_tflow_rawdata(x)
pull_tflow_split(x)
pull_tflow_training(x, prep = FALSE)
pull_tflow_testing(x, prep = FALSE)
pull_tflow_resample(x)
pull_tflow_grid(x)
pull_tflow_preprocessor(x)
pull_tflow_prepped_recipe(x)
pull_tflow_spec(x)
pull_tflow_fit(x)
pull_tflow_fit_tuning(x)
A tidyflow
A logical stating whether the training/testing data should be
returned with the preprocessing step applied (either the formula or the recipe
preprocessing). By default it is set to FALSE
.
The extracted value from the tidyflow, x
, as described in the description
section.
library(parsnip)
library(recipes)
library(rsample)
model <- set_engine(linear_reg(), "lm")
recipe <- ~ recipe(.x, mpg ~ cyl + disp) %>% step_log(disp)
tflow <-
mtcars %>%
tidyflow() %>%
plug_split(initial_split) %>%
plug_model(model)
recipe_tflow <- plug_recipe(tflow, recipe)
formula_tflow <- plug_formula(tflow, mpg ~ cyl + log(disp))
fit_recipe_tflow <- fit(recipe_tflow)
fit_formula_tflow <- fit(formula_tflow)
pull_tflow_rawdata(fit_recipe_tflow)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
#> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
#> Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
#> Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
#> Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
#> Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
#> Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
#> Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
#> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
#> Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
#> AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
#> Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
#> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
pull_tflow_rawdata(fit_formula_tflow)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
#> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
#> Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
#> Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
#> Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
#> Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
#> Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
#> Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
#> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
#> Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
#> AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
#> Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
#> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
# The preprocessor is either the recipe function or a formula
pull_tflow_preprocessor(fit(recipe_tflow))
#> Recipe
#>
#> Inputs:
#>
#> role #variables
#> outcome 1
#> predictor 2
#>
#> Operations:
#>
#> Log transformation on disp
pull_tflow_preprocessor(fit(formula_tflow))
#> mpg ~ cyl + log(disp)
#> <environment: 0x7fbde5031e78>
# The `spec` is the parsnip spec before it has been fit.
# The `fit` is the fit parsnip model.
pull_tflow_spec(fit_formula_tflow)
#> Linear Regression Model Specification (regression)
#>
#> Computational engine: lm
#>
pull_tflow_fit(fit_formula_tflow)
#> parsnip model object
#>
#>
#> Call:
#> stats::lm(formula = ..y ~ ., data = data)
#>
#> Coefficients:
#> (Intercept) cyl `log(disp)`
#> 72.82463 0.06753 -10.06176
#>
# The raw training and testing
pull_tflow_training(fit_recipe_tflow)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
#> Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
#> Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
#> Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
#> AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
#> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
#> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
pull_tflow_testing(fit_recipe_tflow)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
#> Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
#> Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
#> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
# Or with the preprocessor (recipe/formula) applied
pull_tflow_training(fit_recipe_tflow, prep = TRUE)
#> mpg cyl disp
#> 1 14.3 8 5.886104
#> 2 21.5 4 4.788325
#> 3 15.5 8 5.762051
#> 4 18.1 6 5.416100
#> 5 22.8 4 4.947340
#> 6 24.4 4 4.988390
#> 7 33.9 4 4.264087
#> 8 32.4 4 4.365643
#> 9 21.4 6 5.552960
#> 10 19.2 6 5.121580
#> 11 16.4 8 5.619676
#> 12 17.8 6 5.121580
#> 13 15.2 8 5.717028
#> 14 30.4 4 4.554929
#> 15 17.3 8 5.619676
#> 16 22.8 4 4.682131
#> 17 21.4 4 4.795791
#> 18 19.7 6 4.976734
#> 19 26.0 4 4.789989
#> 20 19.2 8 5.991465
#> 21 15.8 8 5.860786
#> 22 18.7 8 5.886104
#> 23 21.0 6 5.075174
#> 24 27.3 4 4.369448
pull_tflow_testing(fit_recipe_tflow, prep = TRUE)
#> mpg cyl disp
#> 1 21.0 6 5.075174
#> 2 15.2 8 5.619676
#> 3 10.4 8 6.156979
#> 4 10.4 8 6.131226
#> 5 14.7 8 6.086775
#> 6 30.4 4 4.326778
#> 7 13.3 8 5.857933
#> 8 15.0 8 5.707110
# A useful shortcut is to extract the prepped recipe from the tidyflow
pull_tflow_prepped_recipe(fit_recipe_tflow)
#> Recipe
#>
#> Inputs:
#>
#> role #variables
#> outcome 1
#> predictor 2
#>
#> Training data contained 24 data points and no missing data.
#>
#> Operations:
#>
#> Log transformation on disp [trained]