plug_data()
specifies the data used in the analysis. This data is used
for the preprocessing and fitting the model.
drop_data()
removes the data from the tidyflow.
replace_data()
first removes the data, then replaces the previous
data with the new one. Any model that has already been fit based on this
data will need to be refit.
plug_data(x, data, ...)
drop_data(x)
replace_data(x, data, ...)
A tidyflow
A data frame or tibble.
Not used.
x
, updated with either a new or removed data frame.
plug_data()
is a required step to construct a minimal tidyflow. We
advise that the data passed to the tidyflow
has already been tested
with the recipe before hand. The tidyflow
is not an ideal workflow
for prototyping with the recipe rather for prototyping with the
model/grid/resample/split.
wf <- tidyflow()
wf <- plug_data(wf, mtcars)
wf
#> ══ Tidyflow ════════════════════════════════════════════════════════════════════
#> Data: 32 rows x 11 columns
#> Split: None
#> Recipe/Formula: None
#> Resample: None
#> Grid: None
#> Model: None
drop_data(wf)
#> ══ Tidyflow ════════════════════════════════════════════════════════════════════
#> Data: None
#> Split: None
#> Recipe/Formula: None
#> Resample: None
#> Grid: None
#> Model: None
replace_data(wf, iris)
#> ══ Tidyflow ════════════════════════════════════════════════════════════════════
#> Data: 150 rows x 5 columns
#> Split: None
#> Recipe/Formula: None
#> Resample: None
#> Grid: None
#> Model: None