
An	introduction	to	R
Jorge	Cimentada	and	Basilio	Moreno

6th	of	July	2019

Learning	more	about	R	functions
So	far	we	have	only	had	a	glimpse	to	the	linear	model

formula	in	a	previous	example.	Here	we	are	going	to	go	a
bit	deeper	on	the	logic	behind	the	formula	interface

used	by	some	R	functions.
Run	one	example	with	the	lm	(Fitting	linear	models)	function	and	the	mtcars	dataset.

Remember	to	ask	for	help	if	needed	?function
lm(mpg	~	vs	+	cyl,	data	=	mtcars)
by(mtcars,	mtcars$cyl,	summary)
mtcars$mpg_mean	<-	ifelse(mtcars$mpg	>=	mean(mtcars$mpg),	1,	0)

The	formula	interface
Let's	take	a	look	at	the	documentation	for	t.test:

We	see	that	there	are	two	separate	methods	(more
about	this	in	a	second)	for	interacting	with	t.test:	the
one	we	just	used,	passing	arguments	x	and	maybe	y,
and	another	one	that	uses	a	formula.	Formulas	play	a

huge	role	in	R.

Here	we	check	the	difference	in	mpg	recorded	by	type	of
transmission	(automatic	or	manual)

?t.test

#am	variable	refers	to	Transmission	(0	=	automatic,	1	=	manual)
my_test	<-	t.test(mpg	~	am,	data=mtcars)
my_test

##	
##		Welch	Two	Sample	t-test
##	
##	data:		mpg	by	am
##	t	=	-3.7671,	df	=	18.332,	p-value	=	0.001374

##	alternative	hypothesis:	true	difference	in	means	is	not	equal	to	0
##	95	percent	confidence	interval:
##	-11.280194		-3.209684
##	sample	estimates:
##	mean	in	group	0	mean	in	group	1
##							17.14737								24.39231

The	formula	interface
Note	that	we	have	not	just	printed	the	output	of	running
the	t-test.	Instead,	we	have	assigned	a	name	to	that
output,	because	it	is	an	object	that	contains	a	lot	more
information	than	what	is	printed	in	the	screen.	This	is	the

most	distinctive	feature	of	R	with	respect	to	other
statistical	languages.

We	can	inspect	the	contents	of	the	my_test	object	using
the	function	str:

str(my_test)

##	List	of	9
##	$	statistic		:	Named	num	-3.77
#	..-	attr(*,	"names")=	chr	"t"
#	$	parameter		:	Named	num	18.3
#	..-	attr(*,	"names")=	chr	"df"
#	$	p.value				:	num	0.00137
#	$	conf.int			:	num	[1:2]	-11.28	-3.21
#	..-	attr(*,	"conf.level")=	num	0.95
#	$	estimate			:	Named	num	[1:2]	17.1	24.4
#	..-	attr(*,	"names")=	chr	[1:2]	"mean	in	group	0"	"mean	in	group	1"
#	$	null.value	:	Named	num	0
#	..-	attr(*,	"names")=	chr	"difference	in	means"
#	$	alternative:	chr	"two.sided"

#	$	method					:	chr	"Welch	Two	Sample	t-test"
#	$	data.name		:	chr	"mpg	by	am"
#	-	attr(*,	"class")=	chr	"htest"

The	formula	interface
Note	that	my_test	is	a	list	contaning	all	the	information
related	to	this	specific	t-test.	Here	we	keep	all	statistic

parameters,	which	we	can	access	and	use
independently.	For	instance:

It	is	a	good	moment	to	go	back	to	the	documentation
and	compare	the	output	of	the	test	against	the	“Value”

section	of	the	help	file.

Let's	take	a	deeper	look	into	the	formula	interface	and
the	structure	of	objects	using	a	linear	model.

my_test$statistic
my_test$conf.int
my_test$estimate

The	formula	interface:	linear	models
Consider	the	case	in	which	we	can	to	now	run	a

regression	on	the	number	of	affairs	using	information
about.	Do	not	much	attention	to	the	theortical	soundness

of	the	analysis:

We	can	see	here	the	elegance	of	the	formula	interface.
The	model	is	doing	several	things.	First,	we	are

recentering	cyl	(number	of	cylinders)	so	that	3	is	the
new	0	value.	It	is	important	that	the	expression	is

wrapped	in	the	I()	function	to	ensure	that	the	-	inside	is
taken	as	an	arithmetical	operator	and	not	as	a	formula

operator.

Then,	multiply	that	new	variable	by	the	variable	hp
(horsepower)	which	is	a	factor,	which	uses	yes	as	the

sample_model	<-	lm(mpg	~	I(cyl	-	3)	*	hp	+	factor(am),	data=mtcars)

reference	level	in	the	dummy	expansion.	Not	only	that,
the	*	operator	creates	the	full	interaction	including	the

main	effects.	Finally,	although	am	is	an	numerical
variable,	we	pass	it	through	factor	to	cast	it	into	a
categorical	with	n	???	1	dummies.	As	we	can	see,	the

formula	takes	care	of	a	lot	of	the	transformations	and	lets
us	express	the	structure	of	the	model	very	succintly.	We
could	have	passed	the	transformed	data	directly	(look	at
the	y	and	x	arguments	in	the	lm	documentation),	but	this

approach	is	considerably	easier.

The	formula	interface:	linear	models
Lets	take	a	look	at	the	object	to	see	the	estimated

coefficients:
sample_model

#					Call:
#	lm(formula	=	mpg	~	I(cyl	-	2)	*	hp	+	factor(am),	data	=	mtcars)
#	
#	Coefficients:
#			(Intercept)					I(cyl	-	2)													hp				factor(am)1		I(cyl	-	2):hp		
#						38.29101							-2.91100							-0.14151								3.76084								0.01854		

The	formula	interface:	linear	models
Sometimes	that	is	the	only	information	that	we	need,	but
most	of	the	time	we	want	to	make	inference	with	those
coefficients.	We	can	see	this	information	by	getting	a

summary	of	the	object:
summary_model	<-	summary(sample_model)
summary_model

#					Call:
#	lm(formula	=	mpg	~	I(cyl	-	2)	*	hp	+	factor(am),	data	=	mtcars)
#	
#	Residuals:
#					Min						1Q		Median						3Q					Max	
#	-4.2202	-1.5052	-0.2882		1.0368		5.9707	
#	
#	Coefficients:
#																Estimate	Std.	Error	t	value	Pr(>|t|)				
#	(Intercept)			38.291011			4.335476			8.832		1.9e-09	***
#	I(cyl	-	2)				-2.911001			0.943814		-3.084		0.00467	**	
#	hp												-0.141511			0.045432		-3.115		0.00433	**	
#	factor(am)1				3.760837			1.199249			3.136		0.00411	**	
#	I(cyl	-	2):hp		0.018541			0.007691			2.411		0.02301	*		
#	---
#	Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1
#	
#	Residual	standard	error:	2.593	on	27	degrees	of	freedom
#	Multiple	R-squared:		0.8388,		Adjusted	R-squared:		0.8149	
#	F-statistic:	35.13	on	4	and	27	DF,		p-value:	2.451e-10

The	formula	interface:	linear	models
Let's	see	how	the	two	objects	(sample_model	and
summary_model)	differ	by	taking	a	look	at	what	they

contain:
names(sample_model)

##		[1]	"coefficients"		"residuals"					"effects"							"rank"									
##		[5]	"fitted.values"	"assign"								"qr"												"df.residual"		
##		[9]	"contrasts"					"xlevels"							"call"										"terms"								
##	[13]	"model"

names(summary_model)

##		[1]	"call"										"terms"									"residuals"					"coefficients"	
##		[5]	"aliased"							"sigma"									"df"												"r.squared"				
##		[9]	"adj.r.squared"	"fstatistic"				"cov.unscaled"

The	formula	interface:	linear	models
The	shortest	introduction	to	objects	and	methods

This	is	one	of	the	beauties	of	R	as	an	statistical	language.
The	object	summary_model	now	holds	all	the	information
about	the	model.	We	could	for	instance	retrieve	the

coefficients	and	the	covariace	matrix	to	get	the	normal-
based	confidence	intervals	(0.975	limit	example):

and	check	that	the	result	matches	the	outcome	of	the
built-in	function:

coefficients(sample_model)	+	qt(0.975,	df=sample_model$df.residual)	*	
sqrt(diag(vcov(sample_model)))

		#			(Intercept)				I(cyl	-	2)												hp			factor(am)1	I(cyl	-	2):hp	
		#	47.18667281			-0.97445500			-0.04829208				6.22149132				0.03432208	

confint(sample_model)

#																										2.5	%						97.5	%
#	(Intercept)			29.395349391	47.18667281
#	I(cyl	-	2)				-4.847546663	-0.97445500
#	hp												-0.234729499	-0.04829208
#	factor(am)1				1.300181717		6.22149132

#	I(cyl	-	2):hp		0.002759139		0.03432208

The	formula	interface:	linear	models
The	two	lines	previous	illustrate	the	way	R	works.

sample_model	is	an	object	that	contains	a	number	of
attributes	like	the	coefficients	or	the	residual	degrees-of-
freedom	that	were	obtained	when	we	fit	the	model.	We
access	these	attributes	either	through	functions	like
coefficients	or	through	the	$	operator,	because

sample_model	is	still	a	list.

On	the	other	hand,	we	can	make	operations	over	the
elements	in	sample_model.	Moreover,	these	function	will
know	that	they	are	being	applied	to	the	outcome	of	a	l
inear	model,	because	that	information	is	given	by	the

class	to	which	sample_model	belongs.

names(sample_model)

##		[1]	"coefficients"		"residuals"					"effects"							"rank"									
##		[5]	"fitted.values"	"assign"								"qr"												"df.residual"		
##		[9]	"contrasts"					"xlevels"							"call"										"terms"								
##	[13]	"model"

class(sample_model)

##	[1]	"lm"

Data	import	and	export:	the	basics
Finally,	it	is	sensible	to	asume	we	will	not	be	working
exclusively	with	R.	Most	of	the	time	(and	because	of
multiple	reasons)	we	need	to	work	in	a	multi-platform

environment.

How	do	we	import	data	-like	a	survey	result-	into	R?	It
depends	on	the	format	of	the	data	we	are	interested	in.
However,	most	of	the	functions	focused	on	that	goal

follow	a	similar	working	structure.

The	most	simple	case	is	read.table,	a	built-in	function	in
R.	Take	a	moment	to	familiase	yourself	with	its

arguments	with	the	following	example.

This	function	will	try	to	identify	data	structured	in	a

read.table(file	=	"local/path/my_csv_file.csv",	sep	=	";",	dec	=	",",
										 row.names	=	c("row1",	"row2"),	col.names	=	c("col1",	"col2"))

tabular	way.	The	most	likely	format	for	this	data	to	be
written	in	is	.csv,	which	stands	for	comma	separated

values.	.csv	files	are	the	best	for	compatibility	since	they
can	be	read	straight	away	in	most	software	solutions.
However,	that	comes	at	the	cost	of	virtual	size	and	the

lack	of	extra	features.

Data	import	and	export:	the	basics
Additionaly,	there	is	another	function	for	writing	data	out
of	R.	The	most	basic	approach	is	write.table	which

uses	the	.csv	format	by	default:

Here	we	are	modifying	some	parameters	for
convenience.	Instead	of	using	a	simple	comma	to

separate	values,	the	sep*aration	argument	is	set	to	“;”
because	this	symbol	makes	it	harder	to	find	false

separators	in	the	values,	while	it	makes	it	a	bit	easier	to
read	the	data	when	we	open	the	raw	file.	Similarly:	.tsv

(tab	**separated	**v*alues).

write.table(x	=	matrix(data	=	0.61:20,	nrow	=	2,	ncol	=	2),	file	=	"my_csv_file.csv",
										 row.names	=	c("obs_1",	"obs_2"),	quote	=	FALSE,	sep	=	";",	dec	=	",",	na	=	"")

?write.table

Data	import	and	export:	reference	guide
Despite	the	vast	possibilities	of	data	formats	you	may

find	in	your	work,	we	have	built	a	starting	guide	to	let	you
know	what	are	some	of	the	most	common	solutions	in	a

handful	of	cases.	From	a	realistic	point	of	view,	we
encourage	you	to	check	with	a	web	search	on	the

specific	format	you	are	trying	to	work	with.	The	reason	is
that	there	are	countless	packages	available,	and	some	of
them	are	not	finished	software	and	hence	their	reliability
and/or	features	can	change	from	version	to	version.

Type	of	data Package Function	for	import Function	for	export
Basic	(unknown) Built-in	function	{utils} read.table() write.table()

Basic	(.csv) Built-in	function	{utils} read.csv() write.csv()

Basic	(.tsv) Built-in	function	{utils} read.csv(...	,	sep	=	"\t") write.csv(...	,	sep	=	"\t")

STATA	(.dta) Foreign read.dta() write.dta()

Haven read_dta() write_dta()

SPSS	(.sav) Foreign read.spss() write.foreign(...	,	package="SPSS")

Haven read_sav() write_sav()

SAS	(.sas) Foreign read.csv() write.foreign(...	,	package="SAS")

Haven read_sas() write_sas()

MS	Excel	(.xlsx	/ Readxl read_excel() Not	available

.xls)
Writexl Not	available write_xlsx()

