
An	introduction	to	R
Jorge	Cimentada	and	Basilio	Moreno

6th	of	July	2019

An	introduction	to	functions
Functions	are	R's	black	box…	Take	the	function	mean	as

example.

Functions	are	just	like	other	'commands'	in	Stata,	SPSS	or
SAS.

mean(iris$Sepal.Length)

[1]	5.843333

SPSS:	mean()
Stata:	mean;	egen	mean
SAS:	MEAN

An	introduction	to	functions
R	has	evolved	so	fast	that	there	are	thousands	of	functions.

Around	250,000	to	be	more	exact!	190	times	more	than
SAS.

We	don't	have	enough	time	to	cover	functions,	for	that,
see	 .

Today	we'll	cover	the	basics.	Let's	start!

here

http://adv-r.had.co.nz/Functions.html

An	introduction	to	functions
Can	anyone	tell	me	what	does	the	mean()	function	do?

sum()	all	numbers	and	divide	by	the	total	length()	of	the	vector.
Create	a	vector	from	1:100	and	do	it	yourself!

An	introduction	to	functions

How	can	we	turn	this	into	a	function?

mean_vector	<-	1:100
sum(mean_vector)/length(mean_vector)

[1]	50.5

our_mean	<-	function(x)	{
		sum(x)/length(x)
}

our_mean(mean_vector)

[1]	50.5

mean(mean_vector)

[1]	50.5

An	introduction	to	functions
Great	job!

our_mean	is	the	name	of	our	function
x	is	the	only	argument	(but	there	can	be	more!)
Everything	inside	{}	is	the	code	to	execute,	more	formally,	the	body	of	the
function.

our_mean	<-	function(x)	{
		sum(x)/length(x)
}

An	introduction	to	functions
.1	Create	a	function	called	adder

.2	It	accepts	two	arguments	called	x	and	y

.3	Inside	the	body,	add	y	and	x	and	don't	give	with	it	a
name.

Generally	speaking,	what	does	this	function	do?

adder	<-	function(x,	y)	{
		y	+	x
}

An	introduction	to	functions
You	often	create	function	to	avoid	repeating	code.

Example:

Transforming,	eh?	Typical.
Which	things	change	in	this	code?

mtcars_two	<-	mtcars

mtcars_two$cyl	<-	as.character(mtcars$cyl)
mtcars_two$vs	<-	as.character(mtcars$vs)
mtcars_two$am	<-	as.character(mtcars$am)
mtcars_two$gear	<-	as.character(mtcars$gear)
mtcars_two$carb	<-	as.character(mtcars$carb)

An	introduction	to	functions
Write	a	function	called	'to_character'
It	accepts	two	arguments,	old_var	and	new_var
The	function	should	contain	an	expression	where	you	turn	a	variable	into	character	and	save	it	a	new
name
In	short,	similar	to	the	code	from	above

An	introduction	to	functions
First	we	start	with	the	code	that	works

Does	this	work?

Now	we	have	to	assign	the	new	name.

Does	this	work?

old_var	<-	"cyl"
new_var	<-	"cyl"

as.character(mtcars$old_var)

as.character(mtcars[,	old_var])

mtcars$new_var	<-	as.character(mtcars[,	old_var])

mtcars[new_var]	<-	as.character(mtcars[,	old_var])

An	introduction	to	functions
Okay,	so	we	got	this	working…

Wrap	it	in	a	function!

old_var	<-	"cyl"
new_var	<-	"cyl"

mtcars[new_var]	<-	as.character(mtcars[,	old_var])

to_character	<-	function(old_var,	new_var)	{
		mtcars[new_var]	<-	as.character(mtcars[,	old_var])
		mtcars
}

our_mtcars	<-	to_character(new_var	=	"cyl",	old_var	=	"cyl")	#	why	did	this	order	change?
class(our_mtcars$cyl)

[1]	"character"

An	introduction	to	functions
All	good	and	well	but	this	only	works	for	the	mtcars

dataset!
Add	a	new	argument	df	to	the	to_character
function
Replace	mtcars	with	df	inside	the	function

Let's	try	it	with	the	iris	data!	This	data	frame	is	already
available	in	the	working	environment.	Check	head(iris)

to_character	<-	function(df,	old_var,	new_var)	{
		df[new_var]	<-	as.character(df[,	old_var])
		df
}

our_iris	<-	to_character(iris,	"Species",	"Species")	#	why	didn't	I	name	the	arguments?
class(our_iris$Species)

[1]	"character"

An	introduction	to	functions
Just	as	in	our	own	function,	functions	can	have	many

many	arguments	or	options.

For	example..

Answer	this:
What's	the	function	name?
What	do	each	of	their	arguments	do?

url	<-	
"https://gist.githubusercontent.com/seankross/a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mtcars.csv"

mtcars	<-	read.csv(file	=	url,	sep	=	",",	header	=	TRUE,	row.names	=	1)

An	introduction	to	functions
When	you	don't	know	what	a	function	or	its	arguments

do,	search	for	its	help	page.
?read.csv

Things	to	consider:
Read	argument	definitions
Checkout	the	examples
Run	them	right	away!

An	introduction	to	functions
?mean
?sd

With	this	vector

Calculate	the	mean	and	sd	(standard
deviation)

vec	<-	sample(c(1:100,	NA),	1000,	replace	=	T)

An	introduction	to	functions
In	R	everything	is	a	function,	which	means	that	you

should	learn	how	to	understand	functions.

Using	?barplot	and	barplot(),	reproduce	the	plot	from
below	exactly.

Read	carefuly	over	each	argument
First	run	barplot(x)	to	see	what	you're
missing

x	<-	table(sample(1:5,	100,	replace	=	T))

An	introduction	to	functions
Take	it	a	bit	further	and	create	a	plot	like	this..

This	will	require	to	read	?plot	in	detail!	That's	the	whole
point	of	understanding	functions.

Start	simple	by	running	plot(x,	y)!

x	<-	rnorm(100)
y	<-	x	+	rnorm(100,	sd	=	2)

An	introduction	to	functions
Help	files	have	several	sections	you	need	to	be	aware	of.

Description	*
Usage	*
Arguments	*
Details
Value	*
Note
References
See	also
Examples	*

An	introduction	to	functions
For	example,	let's	create	a	data	frame.	This	would	be	the

function	to	use.

How	many	arguments	have	I	used?

What	changed	from	the	example	in	the	help	document?

?data.frame

data.frame(num	=	1:10,	char	=	letters[1:10],	sample(c(T,	F),	10,	replace	=	T))

data.frame(num	=	1:10,	char	=	letters[1:10],	sample(c(T,	F),	10,	replace	=	T),
											 row.names	=	1,	check.rows	=	TRUE,	fix.empty.names	=	FALSE)

An	introduction	to	functions
In	the	RECSM	seminars	you'll	be	using	some	advanced	R

which	is	why	we	need	to	take	you	to	the	limit!
Run	one	example	with	the	lm	(Fitting	linear	models)	function	and	the	mtcars	dataset.
Use	by	to	split	mtcars	by	the	factor	cyl	and	apply	the	summary	function
Create	a	new	variable	in	mtcars	called	mpg_mean	using	ifelse.	It	gives	back	a	1	when	mpg	is	above	or
equal	to	the	mean	and	0	when	it's	not.

Remember	to	use	?function
lm(mpg	~	vs	+	cyl,	data	=	mtcars)
by(mtcars,	mtcars$cyl,	summary)
mtcars$mpg_mean	<-	ifelse(mtcars$mpg	>=	mean(mtcars$mpg),	1,	0)

An	introduction	to	functions
Packages	are	one	of	the	most	important	things	in	R.

They	allow	people	to	share	ideas/code
They	are	well	documented
They	can	contain	functions	or	datasets

Where	are	R	packages?	In	something	called	CRAN
(Comprehensive	R	Archive	Network)

How	do	you	install	them?
install.packages("cowsay")
install.packages("lme4")

An	introduction	to	functions
How	do	you	use	them?	Once	installed	we	will	have	to	call
them	in	order	to	get	them	running	in	the	current	session.

Here	we	have	some	more	info	provided	by	the	help
documents.

Read	a	bit,	and	then	check	the	examples!

library("cowsay")
library("lme4")

?cowsay::say
?lme4::nlmer

A	primer	of	loops
How	do	we	repeat	things?

Let's	explain	it	in	the	console…

for	(column	in	mtcars)	{
		if	(is.numeric(column))	{
				print(is.numeric(column))
		}	else	{
				message("Not	numeric")
		}
}

An	introduction	to	functions
I	think	you're	ready	for	some	real	R	programming…

