
An	introduction	to	R
Jorge	Cimentada	and	Basilio	Moreno

6th	of	July	2019

Subsetting	in	R
Alright,	so	far	we	have	seen	vectors,	matrices	and	data

frames.
What	is	subsetting?
Is	it	the	same	for	all	objects?

We	have	10	random	numbers.

Their	positions	are:

x	<-	sample(1:10)
x

	[1]		8		3		1		4		6		7		5		9	10		2

	1		2		3		4		5		6		7		8		9	10	
	8		3		1		4		6		7		5		9	10		2	

Subsetting	in	R
If	x	is:

what	is	the	result	of:

Write	it	down	without	running	it!

	[1]		8		3		1		4		6		7		5		9	10		2

x[c(1,	3,	8)]	#Watch	out	for	square	brackets.

x[c(-1,	-5)]

x[seq(1,	8,	2)]

x[NA]

x[]

Subsetting	in	R
Do	these	subsetting	rules	apply	the	same	for	all	types	of

vectors?

What	about	these	ones?

Super	test:

char	<-	letters[1:10]
lgl	<-	c(TRUE,	FALSE,	TRUE,	TRUE,	TRUE,	FALSE,	FALSE)
gender	<-	factor(sample(c("female",	"male"),	10,	replace	=	T))

char[c(1,	1,	1)]
lgl[c(TRUE,	5,	1)]
gender[c(1:3,	TRUE)]

super_vector	<-	c(char,	gender,	lgl)
super_vector[c(1,	11,	27)]

Subsetting	in	R
Subsetting	rules	are	the	same	for	all	types	of	vectors.

Exceptions	are:
matrices
data	fraes
lists

Let's	go	through	each	one…

Subsetting	in	R
If	you	remember	correctly,	matrices	are	a	vector	with

rows	and	columns.

Building	on	the	previous	examples,	what	wouldl	be	the
result	of	this?

To	confuse	you	even	more,	what	do	you	think	would	be
the	result	of	this?

x_matrix	<-	matrix(1:10,	5,	2)	#	5	rows	and	2	columns
x_matrix

					[,1]	[,2]
[1,]				1				6
[2,]				2				7
[3,]				3				8
[4,]				4				9
[5,]				5			10

x_matrix[c(1,	4,	6)]

x_matrix[2:3,]

Subsetting	in	R
A	matrix	can	be	thought	of	as	two	things:

A	numeric	vector:

Or	a	numeric	vector	with	rows	and	columns

Both	things	come	from	the	same	thing	and	can	be	subsetted	differently!

	[1]		1		2		3		4		5		6		7		8		9	10

					[,1]	[,2]
[1,]				1				6
[2,]				2				7
[3,]				3				8
[4,]				4				9
[5,]				5			10

Subsetting	in	R
Now	that	you	know..	what	are	the	results	of:

x_matrix[1:5,	2]

x_matrix[,	2]

x_matrix[1,	1]

x_matrix[1:10,	2]

x_matrix[,	1:2]

Subsetting	in	R
Now,	data	frame	are	very	similar	to	matrices.

But	if	we	remember	correctly	we	can	have	different	variables	in	a	data	frame.
Data	frames	are	like	the	combination	of	lists	and	matrices.
How	do	we	subset	these?

our_df	<-	data.frame(letters	=	letters[1:10],	age	=	sample(25:50,	10),
																					 lgl	=	sample(c(TRUE,	FALSE),	10,	replace	=	T))
our_df

			letters	age			lgl
1								a		25	FALSE
2								b		27	FALSE
3								c		34	FALSE
4								d		39	FALSE
5								e		40		TRUE
6								f		45	FALSE
7								g		35	FALSE
8								h		43		TRUE
9								i		28	FALSE
10							j		48		TRUE

Subsetting	in	R
The	same	way	matrices	are	subsetted!

What?	Why	is	the	last	one	a	vector?

#	First	3	rows	for	all	columns
our_df[1:3,]

#	Only	the	first	and	8th	row	for	first	two	columns
our_df[c(1,	8),	1:2]

#	The	5th	column	three	times	for	the	third	column
our_df[c(5,	5,	5),	3]

Subsetting	in	R
So	far	we	saw	how	to	subset	the	same	way	we	subset

matrices.
Data	frames	are	lists,	remember?
They	also	have	similar	subsetting	rules	to	lists.

#	We	lose	the	data	frame	dimensions	using	this	method.
our_df[["age"]]

#	We	get	a	data	frame	with	this	one.
our_df["age"]	

#	We	don't	get	a	data	frame	here.
our_df$age

Subsetting	in	R
Following	the	'list'	subsetting	rules	for	data	frames:

Give	me	the	positions	of	the	3rd,	4th	and	9th	element	of	the	age	variable.
It	should	be	a	numeric	vector.
It	should	have	no	dimensions.

The	result	should	be:
[1]	34	39	28

Subsetting	in	R
Well,	now	that	we're	at	it…	How	does	it	work	for	lists?

Explanation
our_list	<-	list(data	=	our_df,	x_matrix,	gnd	=	gender)

Subsetting	in	R

ourlist

Subsetting	in	R

ourlist[1]

Subsetting	in	R

ourlist[[1]]

Subsetting	in	R

ourlist[[1]][[1]]

How	do	we	create	variables	inside
data	frames	or	matrices?

Subsetting	in	R
What	does	this	return?

Nothing!

We're	subsetting	a	variable	that	doesn't	exist

What	is	missing	to	create	this	variable?

our_df[["our_variable"]]

our_df["our_variable"]

our_df$our_variable

Subsetting	in	R
Three	ways	of	creating	a	variable:

There's	one	other	way	of	doing	it…	Think	hard	about	[]
and	the	,	to	divide	rows	and	columns

our_df[["our_variable"]]	<-	1:10

our_df["our_variable"]	<-	11:20

our_df$our_variable	<-	seq(1,	20,	2)

our_df[,	"our_variable"]	<-	"this	repeats	until	end"

Subsetting	in	R
Add	two	variables	to	the	our_df	data	frame	from	any	of

the	options	above.
A	logical	vector	the	states	TRUE	for	when	age	is	above	or	equal	to
35.
An	addition	of	our_df$age	and	our_df$lgl.

Call	them	whatever	you	want.
our_df$lgl_two	<-	our_df$age	>=	35
our_df$add	<-	our_df$age	+	our_df$lgl

Subsetting	in	R
When	whe	subset	we	almost	always	don't	subset	like

we've	been	doing.
We	never	choose	rows	1,	2	and	7,	for	example.
Instead,	we	want	things	like	where	gender	equals	'Male'.
Or	for	people	over	ages	40.

You	have	all	the	tools	to	achieve	this,	can	you	tell	me
how	to	do	this?

Subsetting	in	R
Ok,	we	only	want	people	with	ages	below	40	years	old.

First,	we	need	a	logical	statement.

Everything	set!
age	<	40

Subsetting	in	R
But	age	is	not	a	variable	out	there	in	our	environment!
We	have	to	call	variables	inside	data	frame	as	their	first	names

Only	positions	c(2,	4,	7,	8,	10)	comply	with	the	logical
statement.
We	could	try	only	subsetting	these	numbers.

our_df$age	<	40

	[1]		TRUE		TRUE		TRUE		TRUE	FALSE	FALSE		TRUE	FALSE		TRUE	FALSE

Subsetting	in	R

However,	this	is	too	problematic.	What	if	we	had	2,000	rows?

Much	better!

our_df[c(2,	4,	7,	8,	10),]

			letters	age			lgl											our_variable	lgl_two	add
2								b		27	FALSE	this	repeats	until	end			FALSE		27
4								d		39	FALSE	this	repeats	until	end				TRUE		39
7								g		35	FALSE	this	repeats	until	end				TRUE		35
8								h		43		TRUE	this	repeats	until	end				TRUE		44
10							j		48		TRUE	this	repeats	until	end				TRUE		49

our_df[our_df$age	<	40,]

		letters	age			lgl											our_variable	lgl_two	add
1							a		25	FALSE	this	repeats	until	end			FALSE		25
2							b		27	FALSE	this	repeats	until	end			FALSE		27
3							c		34	FALSE	this	repeats	until	end			FALSE		34
4							d		39	FALSE	this	repeats	until	end				TRUE		39
7							g		35	FALSE	this	repeats	until	end				TRUE		35
9							i		28	FALSE	this	repeats	until	end			FALSE		28

Subsetting	in	R
We	can	subset	pretty	much	anything	with	logical	vectors.

Always	think	about	the	details!

We	could've	written:

But	that's	too	long.

gender[gender	==	"female"]
lgl[lgl	==	TRUE]

gender	==	"female"	#	is	a	logical	statement

	[1]	FALSE	FALSE	FALSE	FALSE		TRUE	FALSE		TRUE	FALSE		TRUE		TRUE

gender[c(FALSE,	TRUE,	TRUE,	TRUE,	FALSE,	FALSE,	TRUE,	TRUE,	TRUE,	FALSE)]

[1]	male			male			male			female	male			female
Levels:	female	male

Functions	in	R
Let's	move	on	to	functions.

What	are	functions?
Objects
Commands
Black	boxes

All	at	the	same	time!

Functions	in	R
For	example,	take	the	sd	function	(standard	deviation).

They're	both	of	different	classes
What	happens	if	you	print	them?

class(x)

[1]	"integer"

class(sd)

[1]	"function"

Functions	in	R

For	the	vector	we	get	its	contents
For	the	function	we	get	it's	source	code

x

	[1]		8		3		1		4		6		7		5		9	10		2

sd

function	(x,	na.rm	=	FALSE)	
sqrt(var(if	(is.vector(x)	||	is.factor(x))	x	else	as.double(x),	
				na.rm	=	na.rm))
<bytecode:	0x563a24b721c0>
<environment:	namespace:stats>

Functions	in	R
Functions	are	commands	that	accept	something	and	return	something

returns	the	standard	deviation	of	a	variable

When	you	have	questions	about	a	function	type	?
function_name

sd(x)

Functions	in	R

Check	what	?rnorm	does.
Use	?cor	to	calculate	the	correlation	between	x	and	y
Set	the	method	argument	to	be	“spearman”

x	<-	rnorm(100)
y	<-	x	+	rnorm(100,	mean	=	1,	sd	=	1)

cor(x,	y,	method	=	"spearman")

[1]	0.7328173

To	be	continued….

