An introduction to R

Jorge Cimentada and Basilio Moreno
oth of July 2019

Subsetting In R

Alright, so far we have seen vectors, matrices and data
frames.

e What is subsetting?
e Is it the same for all objects?

X <- sample(1:10)
X

[1] 8 3 1 4 6 7 5 910 2

We have 10 random numbers.
Thelir positions are:

8

9

9 10
0 2

S
o U
~
Ul d

1

Subsetting In R

If X IS:

[1] 8 3 1 4 6 7 5 910 2

what is the result of:

x[c(1l, 3, 8)] #atch out for square brackets.
x[c(-1, -5)]

x[seq(l, 8, 2)]

X[NA]

X[]

Write it down without running it!

Subsetting In R

Do these subsetting rules apply the same for all types of
vectors?

char <- letters[1:10]
lgl <- c(TRUE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE)
gender <- factor(sample(c("female", "male"), 10, replace = T))

What about these ones?

char[c(l, 1, 1)]
1gl[c(TRUE, 5, 1)]
gender[c(1:3, TRUE)]

Super test:

super vector <- c(char, gender, lgl)
super vector[c(1l, 11, 27)]

Subsetting In R

Subsetting rules are the same for all types of vectors.

Exceptions are:

e matrices
e data fraes
e lists

Let's go through each one...

Subsetting In R

If you remember correctly, matrices are a vector with
rows and columns.

X matrix <- matrix(1:10, 5, 2) # 5 rows and 2 columns
X_matrix

[,1] [,2]

w
UpRWNRE
QUOVOONO

1

Building on the previous examples, what would| be the
result of this?

X _matrix[c(l, 4, 6)]

To confuse you even more, what do you think would be
the result of this?

X matrix[2:3, |

Subsetting In R

A matrix can be thought of as two things:

e A numeric vector:

[1] 1 2 3 4 5 6 7 8 910

e Or a numeric vector with rows and columns

[,1] [,2]
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,1] 5 10

~-

e Both things come from the same thing and can be subsetted differently!

Subsetting In R

Now that you know.. what are the results of:

X matrix[1l:5, 2]
X _matrix[, 2]

X matrix[1, 1]

X matrix[1:10, 2]

X matrix[, 1:2]

Subsetting In R

Now, data frame are very similar to matrices.

our df <- data.frame(letters = letters[1:10], age = sample(25:50, 10),
lgl = sample(c(TRUE, FALSE), 10, replace = T))
our df

letters age gl

a 25 FALSE
27 FALSE
34 FALSE
39 FALSE
40 TRUE
45 FALSE
35 FALSE
43 TRUE
28 FALSE
48 TRUE

ROOO~NOUTRL,WNE
— - TJTQ KD QO T

e But if we remember correctly we can have different variables in a data frame.
e Data frames are like the combination of lists and matrices.
e How do we subset these?

Subsetting In R

The same way matrices are subsetted!

First 3 rows for all columns
our df[1:3, |

Only the first and 8th row for first two columns
our df(c(1l, 8), 1:2]

The 5th column three times for the third column
our df[c(5, 5, 5), 3]

What? Why is the last one a vector?

Subsetting In R

So far we saw how to subset the same way we subset
matrices.

e Data frames are lists, remember?

e They also have similar subsetting rules to lists.

We lose the data frame dimensions using this method.
our df[["age"]]

We get a data frame with this one.
our df["age"]

We don't get a data frame here.
our dfs$age

Subsetting In R

Following the 'list' subsetting rules for data frames:

e Give me the positions of the 3rd, 4th and 9th element of the age variable.
e It should be a numeric vector.
e |t should have no dimensions.

The result should be:

[1] 34 39 28

Subsetting In R

Well, now that we're at it... How does it work for lists?

our list <- list(data = our df, x matrix, gnd = gender)

Explanation

Subsetting in R

ourlist

Subsetting in R

ourlist|1]

Subsetting in R

ourlist[[1]]

Subsetting in R

ourlist[[1]][[1]]

How do we create variables inside
data frames or matrices?

Subsetting In R

What does this return?

our df[["our variable"]]
our df["our variable"]

our df$our variable

e Nothing!

. We're subsetting a variable that doesn't exist

. What is missing to create this variable?

Subsetting In R

Three ways of creating a variable:

our df[["our variable"]] <- 1:10
our df["our variable"] <- 11:20

our df$our variable <- seq(l, 20, 2)

There's one other way of doing it... Think hard about []
and the , to divide rows and columns

our df[, "our variable"] <- "this repeats until end"

Subsetting In R

Add two variables to the our df data frame from any of
the options above.

e A logical vector the states TRUE for when age is above or equal to
35.

e An addition of our df$age and our df$lgl.

Call them whatever you want.

our dfslgl two <- our df$age >= 35
our df$add <- our df$age + our df$lgl

Subsetting In R

When whe subset we almost always don't subset like
we've been doing.

e \We never choose rows 1, 2 and 7, for example.
e Instead, we want things like where gender equals 'Male'.
e Or for people over ages 40.

You have all the tools to achieve this, can you tell me
how to do this?

Subsetting In R

Ok, we only want people with ages below 40 years old.

e First, we need a logical statement.

age < 40

Everything set!

Subsetting In R

e But age is not a variable out there in our environment!
e \We have to call variables inside data frame as their first names

our df$age < 40

[1] TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE FALSE

e Only positions c(2, 4, 7, 8, 10) comply with the logical
statement.

e We could try only subsetting these numbers.

Subsetting In R

our df[c(2, 4, 7, 8, 10), |

letters age gl our variable lgl two add
2 b 27 FALSE this repeats until end FALSE 27
4 d 39 FALSE this repeats until end TRUE 39
7 g 35 FALSE this repeats until end TRUE 35
8 h 43 TRUE this repeats until end TRUE 44
10 j 48 TRUE this repeats until end TRUE 49

e However, this is too problematic. What if we had 2,000 rows?

our dflour dfsage < 40, |

letters age gl our variable lgl two add
1 a 25 FALSE this repeats until end FALSE 25
2 b 27 FALSE this repeats until end FALSE 27
3 C 34 FALSE this repeats until end FALSE 34
4 d 39 FALSE this repeats until end TRUE 39
7 g 35 FALSE this repeats until end TRUE 35
9 i 28 FALSE this repeats until end FALSE 28

e Much better!

Subsetting In R

We can subset pretty much anything with logical vectors.

lgl{1gl == TRUE]

Always think about the details!

gender == "female" # is a logical statement

[1] FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE

We could've written:

gender[c(FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE)]

[1] male male male female male female
Levels: female male

But that's too long.

Functions in R

Let's move on to functions.

What are functions?

e Objects
e Commands
e Black boxes

All at the same time!

Functions in R

For example, take the sd function (standard deviation).

class(x)
[1] "integer"
class(sd)

[1] "function"

e They're both of different classes
e What happens if you print them?

Functions in R

[1] 8 3 1 4 6 7 5 910 2
sd

function (x, na.rm = FALSE)

sqrt(var(if (is.vector(x) || is.factor(x)) x else as.double(x),
na.rm = na.rm))

<bytecode: 0x563a24b721c0>

<environment: namespace:stats>

e For the vector we get its contents
e For the function we get it's source code

Functions in R

e Functions are commands that accept something and return something

sd(x)

returns the standard deviation of a variable

When you have questions about a function type ?
function name

Functions in R

X <- rnorm(100)
y <- X + rnorm(100, mean = 1, sd = 1)

e Check what ?rnorm does.
e Use ?cor to calculate the correlation between x and y
e Set the method argument to be “spearman”

cor(x, y, method = "spearman")

[1] 0.7328173

To be continued....

