
An	introduction	to	R
Jorge	Cimentada	and	Basilio	Moreno

6th	of	July	2019

Rstudio	is	just	a	nice	software
to	run	R!

A	factor	is	just	a	way	of
saying	that	a	variable	has

unique	values!	And	they	can
be	ordered.

elm	<-	c("Good",	"Bad",	"Medium")
(elm_factor	<-	factor(elm,	levels	=	c("Bad",	
"Medium",	"Good"),	ordered	=	T))

[1]	Good			Bad				Medium
Levels:	Bad	<	Medium	<	Good

This	has	consequences
table(elm)

elm
			Bad			Good	Medium	
					1						1						1	

table(elm_factor)

elm_factor
			Bad	Medium			Good	
					1						1						1	

How	to	install	R?
Luckily,	you	guys	have	R	and	Rstudio	installed,	so	you

don't	have	to	worry	about	this!

But	if	you	want	to	install	it	at	home,	please	follow	

That	guide	can	help	you	install
R
Rstudio
And	swirl,	a	package	in	which	you	could	do	a	bunch	of	exercises	as	homework!

this
guide

https://github.com/cimentadaj/Rseminars/blob/master/Lesson_1/README.md

What	is	R?
R	is	a	programming	language	designed	to	do	data

analysis,	usually	interactive.

R	is	helpful	for..
Getting	that	darn	excel/stata	file	into	R	(importing)
Turning	that	very	ugly	dataset	into	something	to	work	with	(data	cleaning)
Automating	your	weekly	reports	(automating	tasks)
Analyzing	data	(modeling)
Creating	nicely	formatted	documents	(communicating	results)
Building	your	own	commands	to	do	specific	things	(functions)

Building	very	creative	graphics

Among	many	things…

And	so..	what	is	Rstudio?

And	so..	what	is	Rstudio?

Let's	get	to	it	then!
R	is	an	interactive	language.	That	means	that	if	you	type

a	number,	you	will	get	a	number.
#Input
10

[1]	10

#Input
5

[1]	5

Introduction	to	R	objects
R	is	also	a	calculator

Try	typing	these	operations	in	R:
5	+	5
10	-	5
10	*	5
20	/	10
(10	*	20)	-	5	/	2	+	2
2	^	3

Before	we	continue,	what	type	of	operations	are	these?

Answers	in	next	slide!

Introduction	to	R	objects
Addition
Subtraction
Multiplication
Division
A	combination	of	all
Exponentiation

Numbers	in	R	are	called	numerics.

For	example:
is.numeric(10)
is.numeric(10	+	20)
is.numeric(10	/	2)

Introduction	to	R	objects
Having	single	numbers,	like	10,	is	not	very	useful.

We	want	something	similar	to	a	column	of	a	dataset,	like
age	or	income.

We	can	do	that	with	c(),	which	stands	for	concatenate.

Read	this	expression	as:	concatenate	these	numbers	into
a	single	object.

c(32,	34,	18,	22,	65)

[1]	32	34	18	22	65

Introduction	to	R	objects
We	can	also	give	it	a	name,	like	age.

Why	didn't	the	result	get	printed?
Where	is	this	age	object	at?
What	is	formally	the	age	object?

age	<-	c(32,	34,	18,	22,	65)

Introduction	to	R	objects
We	just	created	our	first	variable!	The	typical

SAS/Excel/Stata	column.

In	R,	these	objects	are	called	'vectors'.

Vectors	can	have	several	flavours:
Numerics	(we	just	saw	one)
Logicals
Characters
Factors

Introduction	to	R	objects
Suppose	these	ages	belong	to	certain	people.	We	can

create	a	character	vector	with	their	names.

Following	this	guideline,	create	it	yourself.
Create	a	character	vector	with	c()
Include	the	names	Paul,	Maria,	Andres,	Roberto	and	Alicia	inside
wrap	every	name	in	quotes	like	this	“Paul”,	“Maria”,	etc…	This	will	make	R	understand	that	input	as
characters.

Introduction	to	R	objects
Answer:

We	can	also	give	it	a	name,	like	participants.

c("Paul",	"Maria",	"Andres",	"Robert",	"Alicia")

[1]	"Paul"			"Maria"		"Andres"	"Robert"	"Alicia"

participants	<-	c("Paul",	"Maria",	"Andres",	"Robert",	"Alicia")

Introduction	to	R	objects
Character	vectors	are	filled	by	strings,	like	“Paul”	or

“Maria”.

Can	we	do	operations	with	strings?

Makes	sense..	we	can't	add	any	letters.

Alright,	we're	set.	Concatenate	the	numeric	vector	age
and	participants.

"Paul"	+	"Maria"

Error	in	"Paul"	+	"Maria":	non-numeric	argument	to	binary	operator

Introduction	to	R	objects

What's	the	problem	with	this	result?

c(age,	participants)

	[1]	"32"					"34"					"18"					"22"					"65"					"Paul"			"Maria"	
	[8]	"Andres"	"Robert"	"Alicia"

This	breaks	an	R	law!
We	joined	a	numeric	vector	and	a	character	vector.

Vectors	can	ONLY	be	of	one	class.
c(1,	"one")	#	forces	to	character	vector

[1]	"1"			"one"

c(1,	"1")	#	note	that	the	first	one	is	a	numeric,	while	the	second	is	a	character

[1]	"1"	"1"

Introduction	to	R	objects
Now,	which	of	these	people	has	an	age	above	20?

That's	a	logical	vector.

Contrary	to	character	and	numeric	vectors,	logical
vectors	can	only	have	three	values:

TRUE
FALSE
NA	(which	stands	for	“Not
available”.)

age	>	20

[1]		TRUE		TRUE	FALSE		TRUE		TRUE

Introduction	to	R	objects
logicals	can	be	created	manually	or	with	a	logical

statement.

The	above	expression	tests	for	the	logical	statement.

For	example,

c(TRUE,	FALSE,	TRUE,	TRUE)

[1]		TRUE	FALSE		TRUE		TRUE

age	<	60

[1]		TRUE		TRUE		TRUE		TRUE	FALSE

			32				34				18				22				65	
	TRUE		TRUE		TRUE		TRUE	FALSE	

Introduction	to	R	objects
You	can	also	write	T	or	F	as	short	abbreviations	of	TRUE

and	FALSE.

Which	is	comparing:

But	behind	the	scenes,	TRUE	and	T	are	just	a	1	and	F	and
FALSE	are	just	a	0.

What	is	the	result	of	this?

c(T,	T,	F,	T)	==	c(TRUE,	TRUE,	FALSE,	TRUE)

[1]	TRUE	TRUE	TRUE	TRUE

	TRUE		TRUE	FALSE		TRUE	
		"T"			"T"			"F"			"T"	

T	+	5
TRUE	-	5
FALSE	+	TRUE
T	+	T	-	FALSE

Introduction	to	R	objects
Now	that	you	know	that..	what	would	be	the	class	of	the

following	vectors?

numeric:	TRUE	is	coerced	to	1
character:	“FALSE”	is	a	string,	can't	be	turned	to	a	number
logical:	both	elements	are	logical!
numeric:	FALSE	is	coerced	to	0

c(5,	TRUE)
c(5,	"FALSE")
c(FALSE,	TRUE)
c(1,	FALSE)

Introduction	to	R	objects
What	do	we	know	so	far?

Numeric	vectors
Character	vectors
Logical	vectors
How	to	assign	a	name	to	these	vectors
Vectors	can	contain	only	one	class	of
data

What's	missing?
Factors

Introduction	to	R	objects
Factors	are	R's	way	of	storing	categorical	variables.

Categories	such	as:
'Male'	and	'Female'	or	'Married'	and	'Divorced'
'Good',	'Middle'	and	'High'

gender	<-	c("Male",	"Female",	"Male",	"Male",	"Female")

#	Can	be	turned	into

gender	<-	factor(gender)

Introduction	to	R	objects

Introduction	to	R	objects
Factors	are	useful	for	some	specific	operations	like:

Changing	order	of	levels	for	terms	in	modelling
Changing	order	of	axis	labels	in	plots
Among	other	things..

In	many	cases	you	can	use	characters	to	do	what	you
would	want	with	factors!

Introduction	to	R	objects
Now,	have	you	noticed	that	we've	been	assigning	names

to	things?

The	name	age	holds	all	these	elements	inside.	How	do
we	know	where	all	the	variables	we've	created	are?

Let's	ask	R	what	objects	can	be	listed	from	our
workspace	or	environment.

age

[1]	32	34	18	22	65

ls()

[1]	"age"										"elm"										"elm_factor"			"gender"						
[5]	"lgl"										"participants"

Introduction	to	R	objects
So	far,	we	have	a	bunch	of	variables	scattered	around

our	workspace.	This	is	usually	no	the	way	to	go!
We	want	to	group	similar	things	in	the	same	place.

A	data	frame	is	usually	the	primary	structure	of	analysis
in	R

our_df	<-	data.frame(name	=	participants,	age	=	age,	gender	=	gender,	age_60	=	lgl)
our_df

				name	age	gender	age_60
1			Paul		32			Male			TRUE
2		Maria		34	Female			TRUE
3	Andres		18			Male			TRUE
4	Robert		22			Male			TRUE
5	Alicia		65	Female		FALSE

Introduction	to	R	objects
It's	important	that	you	understand	the	thing	that	defines

a	data	frame.
A	data	frame	has	rows	and	columns,	more	technically	called
dimensions.
Data	frames	have	two	dimensions.

dim(our_df)

[1]	5	4

nrow(our_df)

[1]	5

ncol(our_df)

[1]	4

Introduction	to	R	objects
Data	frames	are	very	distinctive	because	they	can	hold

any	type	of	vector.

Matrices	cannot!

Matrices	are	very	similar	to	data	frames.
They	have	same	number	of	dimensions.
You	can	choose	rows/columns	in	similar	ways.

our_matrix	<-	matrix(1:20,	ncol	=	4,	nrow	=	5)
our_matrix

					[,1]	[,2]	[,3]	[,4]
[1,]				1				6			11			16
[2,]				2				7			12			17
[3,]				3				8			13			18
[4,]				4				9			14			19
[5,]				5			10			15			20

Introduction	to	R	objects
Finally,	we're	missing	the	secret	ingridient	the
differentiates	both	matrices	and	data	frames.

Lists

Introduction	to	R	objects
Think	of	lists	as	a	bag	that	can	store	anything.

This	is	a	bag	that	has	3	objects.
A	charachter
A	factor
A	numeric

our_list	<-	list(names	=	participants,	gender	=	gender,	age	=	age)
our_list

$names
[1]	"Paul"			"Maria"		"Andres"	"Robert"	"Alicia"

$gender
[1]	Male			Female	Male			Male			Female
Levels:	Female	Male

$age
[1]	32	34	18	22	65

Introduction	to	R	objects
Think	outside	the	box…	when	I	say	anything,	I	mean

ANYTHING!
complex_list	<-	list(df	=	our_df[1:3,],	matrix	=	our_df[1:3,],	avg_age	=	mean(age))
complex_list

$df
				name	age	gender	age_60
1			Paul		32			Male			TRUE
2		Maria		34	Female			TRUE
3	Andres		18			Male			TRUE

$matrix
				name	age	gender	age_60
1			Paul		32			Male			TRUE
2		Maria		34	Female			TRUE
3	Andres		18			Male			TRUE

$avg_age
[1]	34.2

Introduction	to	R	objects
To	sum	up,	these	are	the	4	types	of	data	structures

available	in	R.

Introduction	to	R	objects
Now	I'm	gonna	rock	your	world…

A	data	frame	is	a	list	(because	it	can	have	any	class)	with
a	row	and	column	dimensions.

data.frame(our_list)

			names	gender	age
1			Paul			Male		32
2		Maria	Female		34
3	Andres			Male		18
4	Robert			Male		22
5	Alicia	Female		65

To	be	continued….

